LTR-5 INSTRUCTIONS FOR USE

Thank you for having chosen a LAE electronic product. Before installing the instrument, please read these instructions carefully to ensure maximum performance and safety

INDICATIONS

Thermostat output

▲ Increase button.

≭७ Exit / Stand-by button

DESCRIPTION

Fig.1 — Front panel

▼ Decrease button. INSTALLATION

- Insert the controller through a hole measuring 71x29 mm.
- Make sure that electrical connections comply with the paragraph "wiring diagrams". To reduce the effects of electromagnetic disturbance, keep the sensor and signal cables well separate from the power wires.
- Fix the controller to the panel by means of the suitable clips, by pressingly gently; if fitted, check that the rubber gasket adheres to the panel perfectly, in order to prevent debris and moisture infiltration to the back of the instrument.
- Place the probe T1 inside the room in a point that truly represents the temperature of the stored product.

OPERATION

During normal operation, the display shows either the temperature measured or one of the following indications:

OFF	Controller in stand-by	E1	In tuning: timeout1 error
OR	Probe T1 overrange or failure	E2	In tuning: timeout2 error
TUN / 5.4	Controller in autotuning	E3	In tuning: overrange error

SETPOINT (display and modification of desired temperature value)

- press button 🖨 for at least half second, to display the setpoint value.
- By keeping button 🔁 pressed, use button 🔻 or 🔺 to set the desired value (adjustment is within the minimum SPL and the maximum SPH limit).
- When button 🕏 is released, the new value is stored.

STAND-BY

Button , when pressed for 3 seconds, allows the controller to be put on a standby or output control to be resumed (with

CONTROLLER AUTOTUNING IN PID MODE

Before starting

- Adjust the setpoint 1SP to the desired value.
- Set 1Y=PID.
- Make sure that the 1PB value matches the desired control mode (1PB<0 for heating; 1PB>0 for refrigeration).

Start autotuning

- Keep buttons 🗹 + 🔺 pressed for 3 seconds. **1CT** blinks on the display.
- With 🔁 + 🔽 or 🔺 set the cycle time in order to define the dynamic of the process to be controlled. ■ To start autotuning press 🔻 + 🔺 or wait for 30 seconds. To abort the autotuning function, press 🗵.

During autotuning ■ During the entire autotuning phase, the display alternates with the actual temperature measured.

- In case of power failure, when power is resumed, after the initial autotest phase, the controller resumes the autotuning
- To abort the autotuning, without modifying the previous control parameters, keep button 🗵 pressed for 3 seconds.
- After the autotuning has taken place successfully, the controller updates the control parameters and start to control.

Errors

- If the autotuning function failed, the display shows an error code:
- E1 timeout1 error: the controller could not bring the temperature within the proportional band. Increase 1SP in case of heating control, vice versa, decrease **1SP** in case of refrigerating control and re-start the process.
- E2 timeout2 error: the autotuning has not ended within the maximum time allowed (1000 cycle times). Re-start the autotuning process and set a longer cycle time 1CT.
- E3 temperature overrange: check that the error was not caused by a probe malfunction, then decrease 1SP in case of heating control, vice versa increase **1SP** in case of refrigerating control and then re-start the process.
- To eliminate the error indication and return to the normal mode, press button 🗵

Control improvement

- To reduce overshoot, reduce the integral action reset 1AR.
- To increase the response speed of the system, reduce the proportional band 1PB. Caution: doing this makes the system less
- To reduce swings in steady-state temperature, increase the integral action time 1IT; system stability is thus increased, although its response speed is decreased.
- To increase the speed of response to the variations in temperature, increase the derivative action time 1DT. Caution: a high value makes the system sensitive to small variations and it may be a source of instability.

RECALIBRATION

- Have a precision reference thermometer or a calibrator to hand.
- Ensure that **OS1**=0 and **SIM**=0.
- Switch the controller off then on again.
- During the auto-test phase, press buttons 🗵 + 🗹 , and keep them pressed till the controller shows **OAD**.
- With buttons 🗹 and 🔺 select OAD or SAD: OAD allows a calibration of 0, inserting a constant correction over the whole scale of measurement. SAD allows a calibration of the top part of the measurement scale with a proportional correction between the calibration point and 0.

- Press 🕏 to display the value and then use 🔁 + 🔻 or 🔺 to make the read value coincide with the value measured by the
- Exit from calibration by pressing button 🖾.

CONFIGURATION PARAMETERS

- Setup menu is accessed by pressing buttons 🗣 + 🗵 for 5 seconds.
- With button 🔻 or 🛋 select the parameter to be modified.
- Press button 🕏 to display the value.
- By keeping button 🖢 pressed, use button 🗹 or 🔺 to set the desired value.
- When button 🖹 is released, the newly programmed value is stored and the following parameter is displayed.

To ex	it from the set	up, press button ⊠ or wait for 30 seconds.		
PAR	RANGE	DESCRIPTION		
SCL	1°C; 2°C; °F	Readout scale. 1°C: measuring range -50/-19.9 99.9/150°C for LTR-5T -40/-19.9 99.9/125°C for LTR-5C 0.0 99.9 %r.H. for LTR-5A		
		2°C: measuring range -50 150°C for LTR-5T -40 125°C for LTR-5C 00 99 %r.H. for LTR-5A		
		°F: measuring range -60 300°F for LTR-5T -40 250°F for LTR-5C		
		Caution: upon changing the SCL value, it is then <u>absolutely</u> necessary to re-configure the parameters relevant to t absolute and relative temperatures (SPL, SPH, 1SP, 1HY, etc).		
SPL	-50SPH	Minimum limit for 1SP setting		
SPH	SPL.150°	Maximum limit for 1SP setting		
1SP	SPL SPH	Setpoint (value to be maintained in the room).		
1Y	HY/PID	Control mode. With 1Y=HY you select control with hysteresis: parameters 1HY and 1CT are used. With 1Y=PID you select a Proportional-Integral-Derivative control mode: parameters 1PB, 1IT, 1DT, 1AR, 1CT will be used.		
1HY	-19.919.9°C	Thermostat differential [control with hysteresis]. Set 1HY on a value greater than zero to make the output work in refrigerating mode, vice versa set on a value lower than zero to make the output work in heating mode. With 1HY =0 the output is always off.		
		* ON OFF		
		1SP 1SP+1HY T[°] 1SP-1HY 1SP T[°]		
1PB	-19.919.9°C	Fig. 1a. ON/OFF refrigerating control (1Y=HY, 1HY>0) Proportional band [PID control]. Fig. 1b. ON/OFF heating control (1Y=HY, 1HY<0)		
IFD	10.310.0	Set 1PB on a value greater than zero to make the output work in refrigerating mode, vice versa set on a value lower than zero to make the output work in heating mode. With 1PB=0 the output is always off.		
		With a proportional controller, the temperature is controlled by varying the time of activation of the output. The nearer the temperature to set point, the less time of activation. A small proportional band increases the promptness of response of the system to temperature variations, but tends to make it less stable. A purely proportional control stabilises the		
		temperature within the proportional band but does not cancel the deviation from the set point.		
1IT	0999s	Integral action time [PID control].		
		The steady-state error is cancelled by inserting an integral action into the control system. The integral action		
		time, determines the speed with which the steady-state		
		temperature is achieved, but a high speed (IIT low) may be the cause of overshoot and instability in the response. With IIT=0 the integral control is disabled. 1PBx1AR% 1PB integral control action area		
		temperature		
		Time		
1DT	0999s	Derivative action time [PID control].		
		Response overshoot in a system controlled by a Proportional Derivative controller may be reduced by inserting a derivative		
		action in the control. A high derivative action (1DT high)		
		makes the system very sensitive to small temperature variations and causes instability. With 1DT=0 the derivative control is disabled.		
		<u>த்</u>		
		Time		
1AR	0100%	Reset of integral action time referred to 1PB [PID control].		
		Decreasing the parameter 1AR reduces the integral control action zone, and consequently the overshoot (see figure on paragraph 1IT).		
1CT	0255s	Cycle time. In the ON/OFF control (1Y=HY), after the output has switched on or off, it will remain in the new state for a minimum time of 1CT seconds, regardless of the temperature value. In the PID control (1Y=PID), the cycle time is the period of time in which the output completes a cycle (Time ON + Time OFF). The faster the system to be controlled reacts to temperature changes, the smaller the cycle time should be, in order to obtain a greater temperature stability and less sensitivity to load variations.		
1PF	ON / OFF	Output state in case of probe failure.		

BAU	NON/SBY	With BAU =SBY, the stand-by button is enabled.
SIM	0100	Display slowdown.
0\$1	-12.512.5°C	Probe T1 offset.
ADR	1255	LTR-5 address for PC communication.

WIRING DIAGRAMS

TECHNICAL DATA

Power supply

12Vac±10%, 50/60Hz, 2W LTR-5...D LTR-5...E 230Vac±10%, 50/60Hz, 2W 115Vac+10% 50/60Hz 2W ITR-5 U

Relay outputs (LTR-5..R..)

OUT1 16(4)A LTR-5.QR. OUT1 12(4)A

SSR drive (LTR-5..F..)

15mA 12Vda

Inputs LTR-5A..

NTC 10KΩ@25°C, part No. LAE SN4.. LTR-5T... PTC $1000\Omega@25^{\circ}C$, part No. LAE ST1.

LTR-5T...

Measuring Range ITR-5A 0 99%rH -40...125°C -50...150°C

Measuring accuracy

 $<\!\pm0.7\%r$.H. in the measuring range $<\!\pm0.3^{\circ}C$ -40...100°C; $\pm1^{\circ}C$ out of that range LTR-5A... LTR-5C...: <±0.3°C -50...140°C; ±1°C out of that range

Operating conditions

15 80% r H

CF (Reference Norms)

EN60730-1: EN60730-2-9: EN55022 (Class B); EN50082-1

Front protection

VIA PADOVA, 25 31046 ODERZO /TV /ITALY TEL. +39 - 0422 815320 FAX +39 - 0422 814073 www.lae-electronic.com E-mail: sales@lae-electronic.com